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1. Introduction

There are various perturbation techniques for constructing analytical approximations to the
oscillatory solutions of second order, non-linear differential equations [1–3]. But many of them
apply to weekly non-linear cases and require the linear part of restoring force to be non-zero.
However, there exist some non-linear oscillation problems in which the linear part of restoring
force is zero [1,2]. For this situation, the method of harmonic balance can be used to obtain
analytical approximate solutions [1]. But it is difficult to give high order analytical approximate
formulae by applying the method. Senator and Bapat [4] presented a method to solve this non-
linear oscillation problem. Wu and Li [5,6] also presented an approach which combines the
linearization of non-linear oscillation equation with the method of harmonic balance. Recently,
Hu [7] pointed out that there exists a classical perturbation technique which is valid for large
parameters. The main purpose of this paper is to point out that this classical perturbation
technique works when the linear part of restoring force is zero.

2. Comparison of two classical perturbation techniques

Consider the Duffing equation

.x þ o2
0x þ ex3 ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0; ð1Þ

where overdots denote differentiation with respect to time t and e is a positive parameter.
According to the Lindstedt–Poincar!e method [1–3], the solution of Eq. (1) is assumed in the form

xðtÞ ¼ x0ðtÞ þ ex1ðtÞ þ e2x2ðtÞ þ? ð2Þ
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and the fundamental frequency o is given by

o ¼ o0 þ eo1 þ e2o2 þ? ð3Þ

in which the parameters oi ði ¼ 1; 2;yÞ are undetermined. Introducing the substitution t ¼ ot;
d=dt ¼ od=dt into Eq. (1), we obtain

o2x00 þ o2
0x þ ex3 ¼ 0; xð0Þ ¼ A; x0ð0Þ ¼ 0; ð4Þ

where primes designate differentiation with respect to t: Substituting Eqs. (2) and (3) into Eq. (4),
and setting the coefficients of the resulting expansion in e to zero, the following relations are
obtained:

e0 : o2
0x

00
0 þ o2

0x0 ¼ 0; ð5Þ

e: o2
0x

00
1 þ o2

0x1 ¼ �2o0o1x
00
0 � x3

0: ð6Þ

Taking into account the initial conditions given in Eq. (4), the following formulae can be
obtained:

xðtÞ ¼ A0 cos tþ
eA3

0

32o2
0

ðcos 3t� cos tÞ þ Oðe2Þ; ð7Þ

o ¼ o0 þ
3eA2

0

8o0
þ Oðe2Þ: ð8Þ

If o0 is very small, or if we let o0-0; then Eqs. (5) and (6) take the form

0 ¼ 0; ð9Þ

0 ¼ �x3
0: ð10Þ

For this case, formulae (7) and (8) are invalid. In order to avoid this defect of the ‘‘normal’’
Lindstedt–Poincar!e technique, an ‘‘innovative’’ classical perturbation technique [7] is now
resorted to. Instead of expansion (3), we may use the expansion [7–12]

o2 ¼ o2
0 þ eo1 þ e2o2 þ?; ð11Þ

where, at this point, the oi are unknown constants. Substituting Eqs. (2) and (11) into Eq. (1)
gives

ðx00
0 þ ex00

1 þ e2x00
2 þ?Þ þ ðo2 � eo1 � e2o2 �?Þðx0 þ ex1 þ e2x2 þ?Þ

þ ðx0 þ ex1 þ e2x2 þ?Þ3 ¼ 0: ð12Þ

This equation is satisfied by setting the coefficients of the powers of e equal to zero,
resulting in

e0 : x00
0 þ o2x0 ¼ 0; ð13Þ

e: x00
1 þ o2x1 ¼ o1x0 � x3

0; ð14Þ

e2 : x00
2 þ o2x2 ¼ o2x0 þ o1x1 � 3x2

0x1: ð15Þ
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Using the normal classical perturbation technique and taking into account the initial conditions
given in Eq. (1), we can easily obtain the second approximate solution to Eq. (1) [7]:

x ¼ A cosot þ
eA3

32o2
ðcos 3ot � cosotÞ þ

e2A5

1024o4
ðcos 5ot � cosotÞ; ð16Þ

with

o2 ¼ o2
0 þ

3

4
eA2 �

3e2A4

128o2
: ð17Þ

Solving Eq. (17) for o gives [7]

o ¼
1

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8o2

0 þ 6eA2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64o2

0 þ 96o2
0eA

2 þ 30e2A4

qr
: ð18Þ

Formulae (16) and (18) are valid even when o0 ¼ 0:

3. Two approaches to the problem

In what follows, we will use the ‘‘innovative’’ classical perturbation technique to solve non-
linear oscillation problems without the linear part of restoring force. Without the loss of
generality, we consider the equation

.x þ x3 ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0: ð19Þ

This equation can be rewritten as

.x þ ex3 ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0; ð20Þ

which gives Eq. (19) when e ¼ 1: There are two approaches to solve the problem given by Eq. (20).
Approach 1: First, we solve Eq. (1) instead of Eq. (20). Obviously, Eq. (1) becomes Eq. (20) if

o2
0 ¼ 0: Therefore, from Eq. (18) we have

o2 ¼
6þ

ffiffiffiffiffi
30

p
16

eA2 ¼ 0:71733eA2; ð21Þ

which gives

o ¼ 0:84695A ð22Þ

if e ¼ 1: Eq. (16) still holds and is identical to the second approximate solution obtained by
Senator and Bapat [4]. The second approximate period of the oscillation of Eq. (19), as
determined by Eq. (22), is

Tc ¼ 2p=o ¼ 7:4186=A: ð23Þ

The exact solution to Eq. (19) is [1]

xðtÞ ¼ AcnðAt; 1=
ffiffiffi
2

p
Þ; ð24Þ

where cn is the Jacobi elliptic function. The exact period of the oscillation is

Te ¼ 7:4163=A ð25Þ
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and the second approximation obtained by the method of harmonic balance is [1]

Th ¼ 7:3859=A: ð26Þ

The corresponding approximate result in Ref. [6] is

Tw ¼ 7:4278=A: ð27Þ

Obviously, formula (23) is more accurate than formulae (26) and (27). The method in this paper
is much simpler than the method of harmonic balance and the Senator–Bapat method.

Approach 2: Eq. (20) can be rewritten in the form

.x þ 0x þ ex3 ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0: ð28Þ

Letting o2
0 ¼ 0 in Eq. (11) results in

0 ¼ o2 � eo1 � e2o2 �?: ð29Þ

Substituting Eqs. (2) and (29) into Eq. (28) and setting the coefficients of the powers of e equal
to zero still gives Eqs. (13)–(15). Then, the analysis now proceeds in the usual way. The second
approximate solution is still expressed by Eq. (16), with

o2 ¼
3

4
eA2 �

3e2A4

128o2
: ð30Þ

Solving this equation for o2 gives Eq. (21).
We can see that approach 2 is simpler than approach 1. Obviously, the two approaches can be

applied to non-linear oscillation problems with other kinds of non-linearities. For example,
consider a non-linear oscillation equation

.x þ f ðxÞ ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0; ð31Þ

where f ðxÞ is an odd non-linear function. Using approach 2, this equation may be written as

.x þ 0x þ ef ðxÞ ¼ 0; xð0Þ ¼ A; ’xð0Þ ¼ 0: ð32Þ

Substituting Eqs. (2) and (29) into this equation and repeating the procedural steps described
above, we can easily obtain the approximate solution to Eq. (31).

4. Conclusions

A comparison of two classical perturbation methods has been made. An ‘‘innovative’’ classical
method is presented again. It is an effective method for dealing with conservative single-degree-of-
freedom systems without linear part of restoring force which cannot be treated by the standard
classical perturbation method. It is simple and easy to use and can give excellent approximate
results.
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